Modernizing Older Extrusion Plants

This chapter sponsored by R.L. Best Company www.rlbest.com

There are many extrusion presses in service around the world today that are 40 to 50 years old (and a few even older) that are still in good condition and making good production. However, because of their design they are not as efficient or reliable as newer presses. What options are available for modernizing older presses, and what upgrade steps should be done first?

In this chapter we try to answer these questions to help the press owner decide which changes are most profitable. Then we will review some of the considerations for specifying and purchasing a new extrusion press. We will also review possible changes to press feed lines (billet heaters and log shears) and extrusion handling equipment after the press.

Planning for Modernizing the Older Press

Before beginning the modernization project, ask these questions:

• What is the structural condition of the main press components, and what is their remaining life? (see Chapter 4 – Inspecting and Repairing Major Components). The plan should include the cost of replacing any failing components in the project cost estimate.

• What is the estimated total cost of all modernization projects and repair/replacement of the major press components? Even if all items in the plan will not be done immediately, consider the total plan for the long term.

• What would be the cost for a new press of comparable capacity? Consider the total cost including installation, less the resale value of the old press.

• Which is the better investment over many years -- replacement or modernization? Consider the improved performance, lower maintenance, and improved life of the new press.

The 40% Rule: Proceed with caution if the cost of repair and modernization will exceed 40% of the cost of new equipment. Based on the author’s past experience, if costs exceed 40% of new cost, it is probably better to purchase new, if possible. The risk of hidden wear and failing components, the additional time and work required on your part, and the probability of lower performance from the modified machine compared to new equipment --- together will offset any savings!

• Are the press feed line and after-press handling systems capable of handling any increase in press capacity that may result from press improvement projects? Otherwise, the cost of eliminating these bottlenecks must be included in the total project cost.

After answering these questions, if the decision is made to modernize the press, next make a list of possible upgrade options. For convenience, following is a checklist of possible upgrade projects, listed generally in the order of priority (your priorities may vary). Also see the Inquiry for Press Line Modernization form on Pages C-19 & 20 of this chapter.

☐ Replace any failing or weak components. Perform the component tests recommended in Chapter 4 – Inspecting and Repairing Major Components, and replace any cracked or failing components according to the recommendations from the inspections.
Convert the press from relay control to full PLC (Programmable Logic Control). “Full” PLC control includes features other than just relay replacement; for example, ram position measurement by transducer, fault diagnosis, and communication with a host computer for data functions. Considering the low cost, high reliability, and performance capabilities of modern PLC controls, it is inconceivable in the 21st Century to operate an extrusion press without full PLC controls.

Modernize the hydraulic system. The exact list of changes will depend on the state of the old system; a study of your system by a qualified hydraulic system engineer is recommended when planning the project. Some possibilities include:

- Replace pneumatic servo controls with modern electronic servos.
- Improve filtration to increase component life and reduce downtime.
- Modernize pumps with newer models, for improved performance and better availability of parts and service support.
- Increase pumping capacity in order to decrease the press dead cycle.
- Install manifolds and re-pipe the press, to reduce leaks and improve performance.
- Improve oil-cooling capacity.
- Consider converting to variable-frequency motors, with either fixed-volume or variable volume pumps. Others suppliers are proposing gear pumps instead of piston-type.

Install a fixed dummy block in place of loose dummy blocks. Modern presses require this modification to improve reliability and reduce operator involvement in the press cycle. See also Chapter 3 – Tooling for additional information.

Install a unistation or rotostation die changer to reduce operator labor and to speed up the die change process (Figures C-2 and C-3). Most presses with single or double die slides require 3 to 5 minutes to change dies, which can be reduced to less than 30 seconds with the new system. Payback for this investment is very quick. In addition, unistation or rotostation changers give a more

precise, consistent die alignment, which is critical to production tolerances on some profile shapes.

- **Improve butt shear performance** with a better design of the shear and blade, a butt knocker, and/or automatic blade lubrication. On some presses the butts do not always fall clear from the press, so the press operators must control the press manually, to be sure that the butt is sheared properly and falls away. Press time is lost when operating the press in manual mode to check or remove a butt, or to manually spray a release lubricant to the blade. There are now several equipment options which can free the operator for other tasks, save press time, and still protect against equipment damage. (See also Chapter 3 – Tooling.) First are high-tech lubricants which may be automatically sprayed on the shear blade to improve butt separation (Figure C-4). Second, butt knockers are available, usually installed together with an improved-design butt shear (Figures C-5, C-6, and C-7). Finally, photocells and light curtains may be strategically located to stop the press unless it is confirmed that the butt has been safely discarded.

- **Improve the container housing and container alignment:** replace a 2-piece or cast container housing with a well-designed 1-piece housing and simplified container alignment system. Many older presses (and even some new ones) are fitted with “X” guiding systems, which have angled guide ways and can only be aligned by trial-and-error techniques. Ask the mechanic who must work with this type of guides and he will confirm: when you make an adjustment in one direction it causes an unintended movement in another direction. With X-guides, adjustment involves a series of approximations, usually until he becomes frustrated and stops even though correct alignment has not been made. There are also designs that use top or bottom center guides, which require that someone climb into the hot press to make adjustments; that is a dangerous and impractical job if the container is at operating temperature, and if done cold the heat expansion must be “guess-timated.” More often than not, center guides are left unadjusted. The result is poor alignment, which affects dimensional tolerances of the profiles.
A better solution is to use “V” guides or flat ways (Figures C-8 and C-9). With these systems, all adjustments are completely logical -- simple vertical and horizontal adjustments -- and will be as accurate as you wish to make them. All changes are made from outside the press frame and may be made with the container at full operating temperature. This system has been in operation for more than 25 years on numerous presses and has been completely trouble free.

- An improved guiding system is usually installed together with a new one-piece container housing, which also improves alignment accuracy and makes it easier to use fixed dummy blocks.

- Install an improved billet loader. Improved designs are discussed in Chapter 7 – Billet and Log Feed Systems. Designs such as the overhead and robot loaders, or the single arm with telescoping support, represent the state-of-the-art for loader design. They increase reliability and simplify maintenance.

- Convert the press to a short-stroke or moveable-stem design. Most conventional presses can be converted to short-stroke, reducing dead cycle by about 4 seconds and increasing billet length by about 25%. The result is an increase in output per press cycle and therefore reduced scrap percentage. Dead-cycle time is also significantly reduced as a percentage of total extrusion cycle time. This conversion is well proven from a practical standpoint – alignment accuracy and reliability are equal to a conventional press. Payback
time is usually less than 6 months. (Figure C-10)

- **Install automatic lubrication for the fixed dummy block.** The time spent to manually stop the press and spray lubricant on the fixed dummy block may be saved by installing an automatic system to spray the block during the dead cycle, for example after every 5 or 10 billets. (See Chapter 3 – Tooling.)

- **Improve container heating (or cooling).** Modern container temperature control is much improved, including new types of container heaters, better controllers, and equally important, cooling for the container. Recent developments have confirmed the importance of consistent temperatures throughout the extrusion process, and new designs permit a much better control of the container temperature. See Chapter 3 – Tooling, pages 3-10 to 3-12. Container life can also be significantly improved.

Specifying and Purchasing a New Press

Specifying and purchasing a new extrusion press is a major responsibility --- after all, the press you install will likely be in service for 50 years or more. Therefore it is critical to insure that the press you specify will perform efficiently and reliably, with minimum maintenance and operating cost, throughout its life span.

Figure C-11: Machining a main cylinder for a new press. Photo courtesy of Presezzi Extrusion.

When proposals from various press suppliers are evaluated, it is necessary to compare construction details and features point-by-point for each press. Where differences are identified, the press suppliers should be asked to explain and justify their particular specification. Then your own engineering evaluation may be made of the different explanations.

Following is a general guide to the main points to consider when specifying a new press and evaluating proposals.

Press size. The most basic decision – press size – is also the most subjective. What is the target market, not only today, but over the life of the press? What is the target circle size and weight-per-length range of the products? Past order history is only a guide to the past, not necessarily to future needs. In the end, press size is eventually a subjective, intuitive decision.

When considering press size, it is recommended to select a specific pressure within the target range of 60 to 80 kg/mm\(^2\) or 85,000 to 115,000 lb/in\(^2\). Specific pressure is calculated by dividing the press tonnage by the area of the container opening (usually based on billet diameter plus 3\%). Reference charts are available at **Pages xvi and xvii of the Useful Tables**. Many presses are operated outside the range of recommended specific pressure, for example for very simple shapes; and your own experience may give you confidence to select a press outside of the recommended range. However, in general you may be risking some loss of productivity due to slower upset and breakthrough.

Billet length. Typical billet lengths have increased greatly in the past 25 years or so, resulting in greater production flexibility and productivity. Some typical maximum billet lengths for common press sizes:

<table>
<thead>
<tr>
<th>Billet Dia. in / mm</th>
<th>Press US Tons</th>
<th>Press M Tons</th>
<th>Billet Length mm</th>
<th>Billet Length in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6” – 152mm</td>
<td>1350 – 1800</td>
<td>1200 – 1600</td>
<td>750 – 850mm</td>
<td>30” – 34”</td>
</tr>
<tr>
<td>7” – 178mm</td>
<td>1800 – 2200</td>
<td>1600 – 2000</td>
<td>850 – 1000mm</td>
<td>34” – 40”</td>
</tr>
<tr>
<td>8” – 203mm</td>
<td>2400 – 2750</td>
<td>2200 – 2500</td>
<td>850 – 1250mm</td>
<td>34” – 50”</td>
</tr>
<tr>
<td>9” – 229mm</td>
<td>2750 – 3100</td>
<td>2500 – 2800</td>
<td>1000 – 1350mm</td>
<td>40” – 53”</td>
</tr>
<tr>
<td>10” – 254mm</td>
<td>3000 – 3600</td>
<td>2800 – 3100</td>
<td>1250 – 1400mm</td>
<td>50” – 55”</td>
</tr>
<tr>
<td>12” – 305mm</td>
<td>4200 – 5000</td>
<td>3850 – 4600</td>
<td>1350 – 1400mm</td>
<td>53” – 55”</td>
</tr>
<tr>
<td>14” – 356mm</td>
<td>5200 +</td>
<td>4700 +</td>
<td>1500 mm +</td>
<td>60” +</td>
</tr>
</tbody>
</table>

Conventional vs. short-stroke or compact-type press. Today’s market has moved overwhelmingly toward short-stroke (moveable stem) and compact presses, especially in Europe. These three press types are illustrated in **Chapter 1 – Routine Maintenance**.

The short-stroke press reduces ram travel by moving the stem sideways (or downwards) immediately after it exits the container. With the compact press, the container moves back over the stem, and then both travel back to make room for loading the billet; the billet is loaded in front of the container, and the container “swallows” the billet as it closes against the die.

Both the short-stroke and compact types reduce dead cycle by reducing, in a logical manner, the distance which the main ram must travel in relation to maximum billet length. Since this travel is slow and occurs in both directions, the savings in dead-cycle time are significant, usually about 4 seconds compared to a conventional press with comparable hydraulic system. These press types are also much more rigid in structure, with shorter tie-rods and less overall deflection of the platen.

Component construction -- cast or forged. In the early days of aluminum extrusion, many of the main press components (platens, main cylinders, container housings) were supplied in cast iron or cast steel. In recent years, most of these components have been built of forged steel instead, for reasons well explained by Mr. J.O. Nøkleby of Det Norsk Veritas in **Chapter 4 – Inspecting & Repairing Major Components**.

Platen thickness. The press front platen should be as thick as possible within practical limits. Rigidity of the platen for die support increases geometrically with the thickness. Platen deflection
should be less than 0.010 to 0.015 inches (0.254 to 0.381 mm) under full load in order to minimize die deflection.

Pre-stressed tie rods. Fatigue failure of tie rods, common in earlier press designs, may be virtually eliminated by installing sleeves over the tie rods and pre-stressing them over their whole length. Details of the sleeve design and pre-stress procedures are critical to the application.

Press dead cycle. Capacity lost to dead-cycle time is a major factor in press performance. Fortunately, dead-cycle times have fallen dramatically in recent years, thanks to PLC controls, improved hydraulic systems, conversion to short-stroke and compact press designs, and other innovations. While very short dead-cycle times may be quoted by press suppliers, it is extremely important to always use the same definition of dead cycle when making comparisons of different presses. Items which may or may not be included in a supplier’s calculation include decompression, billet upset, and burp cycle. Be sure that all suppliers are referring to the same definition of dead-cycle. The best way to get correct information is to require a cycle bar chart with all component movements diagrammed on a time scale.

Hydraulic system. This area of the specification involves many issues:

- **Supplier** – hydraulic components should be supplied by your preferred vendor, based on your past experience and maintenance program. Spare parts in common with your existing presses should be one issue to consider. Second, consider the responsiveness of different vendors when on-site service and training are required. The press supplier should be willing to use components supplied by the vendor you prefer. Your preferred hydraulic vendor may also be helpful in specifying the system details for the new press.

- **Type of Pumping System.** Choose between variable-volume and variable speed pumps, or a combination, and between piston and gear pumps. See references on page C-2 of this chapter.

- **Number of main pumps.** Consider increasing the number of main hydraulic pumps in order to improve performance and reduce dead-cycle time.

- **Location of pumps.** The pumps may be located on the tank over the press, on the floor behind the press, or even in a pit or separate room. Location affects noise level, maintenance access, and system performance.

- **Oil filters and cooling.** Proper filtration is critical to component life and performance (see Chapter 5 – Hydraulic Equipment). Be sure that the design of filters, heat exchangers, and temperature control takes into account the actual conditions and climate of your plant.

- **Manifolding, piping, and miscellaneous components.** Specify the use of manifolds to reduce oil leaks. Careful selection and placement of valves and other components can reduce system shock and oil leaks, and permit reduced dead-cycle time.

PLC controls. All modern presses are controlled by PLC controls, but it is still important to define which features will be included in the control scheme of your new press. Some issues include:

- **Supplier.** Whether Allen-Bradley, Siemens, Modicon, or other --- specify the brand of PLC that you prefer, based on performance, technical support, and familiarity of your maintenance technicians.

- **Features and integration.** Today’s PLC’s may be integrated with company-wide computer systems to offer capture and recall of data and on-line order entry. Touch-screen displays inform the operator of data trends as well as the past history of each die. The range of options is great and still growing- make sure your new press takes advantage of the potential.

- **Diagnostics.** Fault displays can notify you of potential breakdowns before they occur. For example, some new presses allow continuous measurement of container alignment. Networking allows remote display of press condition and faults at a screen in the maintenance shop, or even on the maintenance person’s home computer (through cable or
dial-up networking). The press or software supplier may diagnose and resolve problems from anywhere in the world via the internet.

Container guiding. Most modern presses use container guiding systems which may be adjusted from outside the press frame --- no center guides. Guide surfaces should be in the horizontal and vertical planes --- no “X” guiding. See the illustrations above.

Container heating/cooling. Newer presses, especially larger sizes, offer multi-zone heating control and multiple points for measurement of container temperature. It is preferred to separate the container into upper and lower zones, as the top tends to get hotter than the bottom. Some suppliers also offer container cooling in order to be able to reduce the temperature when it exceeds a pre-set limit (usually in the center or rear of the billet). See Chapter 3 – Tooling, pages 3-10 to 3-12.

Die stack dimensions. The depth of the tooling stack determines the deflection of the die under load: deflection is reduced by the third power of the stack depth. On the other hand, a larger tool stack will increase costs. Be sure to carefully select the optimum die stack dimensions.

Die changer type. Layout considerations are key to this choice. The rotostation changer extends farther away from the press but is more compact in the direction along the press axis. The unistation or shuttle-type is longer along the press axis but does not stick out as far. The unistation may have a slight advantage in accessibility for ease of maintenance.

Billet loader type. For swing-arm type loaders, the two-piece loader has generally been dropped in favor of a one-piece with a telescoping support. Compact and short-stroke presses typically use an overhead or robot-type loader to transport the billet from the shear to the press centerline.

Butt Shear. Design should include a butt-knocker. Some suppliers offer proprietary designs, which may improve blade contact with the shearing surface.

Quick-change container and stem. Where more than one billet size is to be used, it is recommended to specify a quick-change design for the container and stem. Various designs are available to permit change-over in the minimum possible time.

Other specialty features. Proprietary press features offered by various press suppliers include:

- **No-burp extrusion**, where the container is held open during billet upset in order to eliminate or minimize the “burp” cycle.
- **Die locking**, to hold the die face fixed in both the horizontal and vertical directions while the butt is sheared, in order to insure a uniform, smooth sheared surface.
- **Profile shearing between the die and backer**, to reduce the quantity of aluminum wasted at each die change.

Spare parts. The initial project appropriation should include about 5% for purchase of spare parts. Spare parts should be negotiated as part of the press purchase, including the make and model of purchased components, to insure local availability as well as matching existing parts inventory.
Modernizing the Press Feed Line

- **Energy-efficient Billet Heater.** Many older billet heaters were built when energy efficiency was not important due to low fuel cost. For example, chain-bottom furnaces have an open bottom so that cold air may keep the chain cool and improve chain life; these furnaces are typically only 18 to 20% efficient. Later designs used a closed bottom with support rollers and a pusher device to push the billets through; these improved efficiency to 25% or so. More recent designs improve efficiency by recirculating hot exhaust gas over the incoming billets or logs. The latest improvements include:
 - Hot jets to increase convection heat transfer
 - Preheating combustion air with waste heat
 - Improved sealing of exit door and thermocouple ports
 - Improved insulation

 The latest billet heaters improve fuel efficiency to the range of 50 to 60% or more. Electrical power consumption should be included when evaluating total energy efficiency of various billet heaters, and the desired efficiency should be guaranteed at normal operating conditions.

 There have also been significant improvements in refractory design, and in the billet support rollers.

 Another important consideration when purchasing a new billet furnace is the ability to accurately control billet temperature within a narrow range, in order to maximize the extrusion speed of the press.

- **Taper Heating or Taper Quenching of Billets.** Because each billet gains heat at the back end during extrusion, the ideal situation is to use a billet that is hotter at the front end; in theory this allows extrusion at a constant, maximum speed. There are several schemes for
supplying “taper-heated” billets to the press:

- Use electric induction heating, in which case it is relatively easy to taper heat. (However, both the equipment investment and operating cost are quite high.)
- Use gas preheat with only the taper applied by induction (see illustration at Chapter 7, Figure 7-4).
- Use gas heat with a gas burner at the end to apply a taper heat to the end. (The temperature profile is not as precisely controlled, but the operating cost and investment are significantly lower.)
- Pass the heated billet through a water quench unit in order to cool one end.

At this time, taper heating and quenching are relatively new technologies, and reports of the success and benefits vary from complete success to negligible change. It is not yet possible to absolutely confirm or deny the benefits claimed by the various suppliers and users.

Log Shear or Saw. For most new soft-alloy extrusion lines, the press feed includes a hot shear or saw for cutting hot logs to the correct billet length. This option allows quick changes of billet length to match the requirement, for example when the die is changed. The optimum billet length may be instantly calculated (and re-calculated if necessary) based on data from the press and puller PLC’s.

The hot log shear or saw cuts the log after the heater and therefore can respond immediately to changing process demands. However, if a saw is used before the heater, any decision to change length must be anticipated well in advance of the need. For this reason most new plants choose a hot shear or saw between the heater and the press. Typical hot shears are illustrated in Chapter 7 – Billet & Log Feed Systems, Figures 7-16, -17, and -18. A hot log saw is shown in Figure C-15 (at right).

When is it justified to convert an existing plant from pre-cut billets to a log furnace and hot shear or saw? There is no general answer to this question --- it depends on the specific economics of each plant. While most new presses today are equipped with log shears or saws, the situation is different for a retrofit. There are several factors to be considered in the economic evaluation:
• The inventory of logs will be much less compared to the pre-cut billets which must be maintained if there is no shear or saw. The working capital saved will largely offset the investment in equipment.

• The quantity of butt scrap and also handling system scrap will be reduced, typically by more than 5 percent. One extruder found that with pre-cut billets, incorrect lengths were being used more than half of the time, due either to insufficient inventory, or to having the wrong billets in the billet furnace for the die being run.

• Newer log furnaces may exceed 60% fuel efficiency, compared to 18% for old chain-bottom furnaces. These savings can be substantial.

Added together these savings usually justify a retrofit, unless major building modifications are necessary to provide space for the system. Of course the hot shear or saw system must be reliable and efficient, or the savings may not be realized.

Log brush. Logs on their way to the log furnace pass through spinning wire brushes, which remove oxides and other contamination from the logs’ exterior. In most cases a large amount of dirt, oxide, and other contamination is removed from the surface, and it is clear that these materials can only damage the quality of the extrusions if not removed.

Billet Transfer Conveyor and Loader. The conveyors which transport hot billets from the billet heater or log shear to the press are critical to press performance, because they often cause excessive downtime and require constant operator attention. Many of the older systems still in use are difficult to maintain because the components are inaccessible. Billets don’t stay aligned, so the operator must watch each billet, ready to grab a pry bar and help the billet into position; this keeps the operator tied to the press and prevents truly automatic operation of the press. For these reasons, billet conveyors offer one of the best ways to improve press maintenance. Described below are some of the more common billet conveyor designs, listed in order from best to worst (also illustrated in Chapter 7 – Billet & Log Feed Systems, Figures 7-20, -21, and -22).

• Robot loader: Today many new presses are equipped with robot-type billet loaders, designed to accommodate moveable-stem systems. Robot loaders offer precise positioning and easy access for maintenance. A telescoping device supports the billet, yet permits the robot to withdraw quickly so as not to adversely affect the dead-cycle.

• Overhead billet conveyor: This type picks up the billet in a clamp and transfers it over the press tie rods, lowering it onto a billet support during the press dead cycle. It offers the advantage of gentler billet handling (important for 2-piece billets), plus free access to the floor area between the press and log shear or billet furnace.

• Transveyor: This device consists of a billet holder “tray” which travels on a fixed track from the billet furnace or log shear to the press loader, where the tray is mechanically tipped over to dump the billet into the loader. The transveyor is simple, elegant, reliable, accessible for maintenance, and easily adapted to most presses. (“Dumping” a 2-piece billet is not preferred, but reliability is still good.) By using an
encoder and PLC control, the tray may be paused in intermediate positions for billet lubrication. It is available from most equipment suppliers.

- **Pivot arms:** Often used with one of the other type devices below; a pivoting arm, or a series of arms, actuated by air cylinders, cradles the billet loosely within a “cage” while moving it horizontally and down to the next device. Pivot arms are rugged and reliable and easy to design and build. Because the billet rotates, pivot arms are not very reliable for handling 2-piece billets. **2-piece loaders** using pivot arms have been retro-fitted on some presses in order to reduce dead-cycle time. However, the general experience has been that the extra maintenance downtime caused by increased mechanical complexity more than offsets any benefits in reduced dead-cycle. A 1-piece loader with telescoping tray seems to be a better solution.

- **Elevator (cylinder or chain):** Common on older presses, a carrier is actuated by chain/sprocket or air cylinder, to lower the billet from the heater to a lateral conveyor. These devices are simple, crude, and fairly reliable.

- **Gravity (rolling) tables:** Often used together with elevators or pivots to replace parallel chains (below); however, hot billets tend not to roll in a predictable manner. Two-piece billets can’t be handled. With no moving parts, the only maintenance needed is occasional cleaning.

- **Parallel chains (with lugs):** Always found with a set of pry bars used by the operators to straighten cocked billets. It is almost impossible to keep the different chains synchronized. Access for maintenance of chains, sprockets, and drives is extremely difficult.
Modernizing the Handling System

While extrusion presses usually have a working life of 40 to 50 years or more, handling systems after the press tend to wear out or become obsolete every 10 to 15 years. The most common problem occurs when press output increases due to new technology, but the handling system is unable to keep up with the increased production. Therefore, the first step in modernizing the handling system is to determine the real capacity of the press as well as the forecast capacity for the future. The modernization projects should be designed to eliminate any bottlenecks within the handling system. One goal is to insure that worker fatigue does not limit the output of the press; this is accomplished with automation that allows the press system to operate without routine operator intervention.

The other goals of modernizing the handling system are to improve product quality, reduce scrap, and improve manpower efficiency.

Suggested projects follow, listed in the order of material flow through the plant:

- **Air quench systems.** Air quench systems may be upgraded by adding individual fans above and below the lead-out, run-out, and cooling tables. A better solution may be to install plenum ducts, either above or underneath the tables, and feed them by remote blowers; in this case control of the air volume is simpler and the air may be better directed onto the profiles. Another recent design achieves high-intensity cooling with air nozzles arrayed around the profiles, supplying high-velocity air from remote blowers. High-intensity cooling may increase profile surface quality and improve tensile properties.

- **Water quench systems.** For alloys that require rapid cooling with water, wave-type quenches are often replaced with high-intensity water sprays. The sprays should be designed to disrupt the barrier layer of steam on the profile surface; the steam may actually decrease the cooling rate. Some sophisticated quench units allow selective activation of sprays at various points around the profiles being cooled.

- **Puller/hot saw.** Modern production efficiency requires continuous extrusion, in which pocket or feeder dies produce continuous strands welded together; a hot saw or shear cuts the long strands on the lead-out or run-out table. With a modern puller/hot saw system, it is no longer necessary for the press operator to manually guide or cut off the profiles every billet. Most presses now require double pullers, because it is impractical to return a single puller within today’s dead cycles, which are commonly less than 20 seconds. Double pullers may be either hand-off or parallel types.
Double pullers with flying-cut saws - hand-off type: these have the saw on board one of the pullers and cut on the weld mark during the extrusion cycle to save scrap. To avoid marring the profile surface during the hand-off it is critical that the speeds of the two pullers be precisely synchronized and that they be accurately aligned.

Double pullers with flying-cut saws – non-hand-off type: with these the saw is separate from the pullers (a “third machine”). They also cut on the weld mark during the extrusion cycle to reduce scrap. Synchronization of speeds is still important but this type is not as likely to cause marking.

Parallel double pullers work on alternating extrusion cycles and do not hand-off the profiles; they may be used with a positionable saw, with a single (separate) flying-cut saw, or with a flying-cut saw on each puller.

For the lowest possible scrap rate, the profile must be cut directly on the weld mark. This may be accomplished with a flying-cut saw, or a positionable saw combined with a “double-length” lead-out table. When a positionable saw is used with shorter lead-outs, the weld must later be sawed out and discarded, resulting in about 2% additional scrap.

Flying-cut saws require a longer lead-out in order to be able to accommodate higher extrusion speeds. The time required for essential actions such as acceleration, clamping, sawing, saw retraction, etc., require a finite time cycle. As extrusion speeds increase, the distance required for these actions to take place also increases, usually a minimum of 50 feet (16 meters) lead-out length, and often much more. As this distance increases, the “Double Length” line becomes attractive because flying cut is no longer necessary. See pages C-30 and -31.

Profile shears are occasionally used on small profiles but often cause problems on hollows or larger shapes. The trend is toward hot saws, equipped with saw blade lubricants and chip collectors.

Lead-out and Run-out tables. These tables now use rollers instead of moving slats to support and convey the profiles. Kevlar-covered rollers in various designs reduce damage to the profile surface and resist the heat very well (a good cooling system is critical). Hardened steel rollers

8 See Double-Length Run-out Systems at the end of this chapter, page C-30 and -31.
9 Chip collectors are not suitable for flying-cut hot saws.
may be used with bars and very heavy profiles. Rollers may be idle or powered. The run-out table should drop down at the end of each cycle to allow transfer of the profiles by transfer belts. Cooling air ducts are usually integrated within the framework with air distribution nozzles near the top of the rollers.

- **Lift-overs.** With modern systems the run-out table drops down to place the profiles on transfer belts, which move the profiles to the cooling table. For very heavy profiles, lift-over arms may still be used; these should be designed for minimum tilt angle, to prevent the profiles from rolling or sliding off during the transfer.

- **Cooling Tables.** Belt-type cooling tables are the standard for all but the heaviest profiles. Kevlar belts give excellent service life in a well-designed system: profiles must be well cooled before contacting the belts. Mechanical design is also important: belt alignment and change-out should be simple as possible.

 For bars and heavy profiles, tables may use walking beams with Kevlar felt covers, or Kevlar belts with tooth-type positive drive pulleys.

- **Stretcher.** Some extruders must decline some business because their stretchers are too small. The stretcher should be sized for the yield strength of the heaviest profile, plus 20%. One-man and no-man stretchers are very common; they save manpower and also damage caused by manually sliding the profiles into the jaws. Newer stretcher jaws clamp vertically and limit the degree of crushing, to reduce scrap. Stretching may be controlled by displacement, by force, or by percentage of total length (profile length must be measured).

- **Batching Table.** The table after the stretcher is used to automatically accumulate profiles into the correct batch width for sawing, using reversible belts and photocells. It is desirable to store two or more batches if possible, to avoid loss of time.

- **Saw Feed Conveyor.** This conveyor usually consists of idle rollers plus several driving belts, or else power-
driven rollers. The conveyor drive is 2-speed, slowing down just before the profiles contact the gauge stop. The table usually drops down to receive the profiles from the batching belts.

- **Saw.** Today’s finish saws have the blade and drive located under the table, with clamps above the table to clamp down on the profiles. The blade rises up for the cutting cycle, then drops below the table for return. This design is able to significantly reduce the noise from profile sawing.

- **Length Gauge.** Profile length gauges are set-up automatically to the correct length, which is continually confirmed to the PLC controls via encoder. Accuracy of cut is improved by slowing the conveyor just before the profiles reach the gauge stop.

- **Manual Off-loading and Stacking of Profiles.** Lateral belt conveyors transfer the profiles over to the basket or cart for manual stacking; they reduce the risk of back injuries or other ergonomic problems.

- **Automatic Profile Stacker.** Manpower is reduced and a potential bottleneck to the press eliminated when profiles are automatically stacked. Batching belts are used to create a batch of the same width as the basket. Certain types of stackers also permit automatic de-stacking in other areas of the plant.
Downstream Material Handling

Handling containers of profiles. There are several commonly used systems to handle the baskets or buggies of profiles after leaving the press, including floor-mounted wheels (Figure C-28), and floor-mounted chain conveyors (Figure C-29). Both of these are simple, low cost, low tech, and easy to maintain and operate.

Packaging finished profiles. Some plants spend almost as much for packaging profiles as for extruding them. In Europe several different automatic wrapping systems are used, for example:

- spiral wrapping, with clear plastic or crepe paper (note: this is quite different from the stretch wrapping offered by some US packaging companies; stretch wraps may bend the profiles)
- auto feeders for interleaving paper
- auto carton makers
- auto strapping of bundles

Various options are offered, with different degrees of automation.

Auxiliary Equipment

- **Die Ovens.** There are important developments in die heaters, as described in *Chapter 10 – Die Ovens.* The objectives are to improve accuracy of die temperature control; to minimize oxidation of the die (especially the bearings); to avoid over-heating or heating for too long; and to conserve energy. In Europe the standard oven is the drawer type, which provides for more orderly management of dies within the oven; and also to prevent the thermal shock when a lid is raised, exposing an oven full of dies to the cold air. Beyond this standard, many extruders are changing to ovens with inert gas atmospheres, to eliminate bearing oxidation, and also to reach temperature faster and more uniformly. Another new heater technology uses induction current to heat dies within 20 minutes, according to the manufacturer’s claims.

- **Age Ovens.** There are several alternative age oven designs to be considered:
 - **Direct Fired vs. Indirect.** Age ovens are most commonly direct fired; that is, the products of combustion are mixed with the circulated hot air. In applications where metallurgical or finishing requirements prohibit contact between the profiles and combustion products (principally water), the burner(s) fire through a radiant tube and then
exhaust to the outside; circulating air passes over the outside of the tube and is heated by radiation and convection. Unless properly designed, indirect firing may result in higher temperature exhaust and lower energy efficiency; and greater firing capacity may be required for the oven.

- **End-Flow vs. Cross Flow.** The majority of age ovens are end flow, with the circulating hot air passing lengthwise over the profiles. In theory, cross-flow ovens offer improved temperature uniformity but slightly lower energy efficiency. However, uniformity may be better or worse with cross flow, depending on the nature of the load and how it is stacked in the oven. Heat transfer predominately occurs by means of convection, so an important objective is to have maximum contact between the profile surface and the circulated air. If profiles are stacked so that cross flow of air through the load is effectively blocked, or so that only the edges of the profiles are touched by the air stream, heat transfer will be poor for all but the first profile in each row. With end flow ovens, profiles must also be stacked to permit good air flow through the load.

- **Oven Length: Efficiency vs. Uniformity.** In theory, thermal efficiency increases with greater length of the load along the path of air flow. Unfortunately, temperature uniformity also decreases with load length. Therefore, each oven design is something of a trade-off of these factors. Because of the layout of most extrusion plants, age ovens are commonly built to hold 1 or 2 containers of profiles end-to-end. Where space and capacity requirements dictate a longer oven, multi-zone construction is preferred (see below). Otherwise, regular temperature surveys are even more important.

- **Multi-zone vs. Single Zone.** To improve temperature uniformity, longer ovens may be built with two or more zones of circulation and control. Older single zone ovens may also be converted. Each control zone will have its own systems for combustion, air circulation, and temperature control. Modern end-flow ovens should have one control zone for every length of profiles placed end-to-end.

- **Combustion Systems.** Among the various types of industrial heating equipment, age ovens are a relatively low-temperature application and so may be heated with various types of combustion systems. One common type is the package or integral burner system, which incorporates the burner, air blower, air control damper, air filter, pilot, spark igniter, flame rod, and other features in a single unit. The package unit may be flange-mounted directly into the hot air recirculation chamber or plenum. The burner may be either nozzle mix or premix.

See also *Chapter 9 – Age Ovens.*
Complete Extrusion Press Rebuilds

From a presentation by Butech-Bliss engineer Ben Demar at the AEC Press Maintenance Workshop, Atlanta, April 2018.

There are several reasons for considering major rebuilds to extrusion presses:

- Worn out or failing components
- Decrease dead cycle time or otherwise improve efficiency
- Increase pressure and tonnage
- Better control, repeatability & accuracy

Worn out or failing components may be due to:

- Fatigue
- Casting issues
- Stress risers
- Improper loading, for example:
 - Past tonnage upgrades made without engineering evaluation
 - “Crashes”
 - Operation with misalignment

The first step prior to a major rebuild is an engineering evaluation, consisting of a visual inspection, review of the process requirements, a stress analysis and fatigue analysis of the press. Next step is a physical inspection or survey, using both conventional tools and laser trackers, to assess component:

- Position
- Shape
- Alignment – to gravity and to other components
- Trueness

Component condition may be examined with non-destructive testing (NDT)

- Ultrasonic Test (UT)
- Magnetic Particle Test (MT)
- Die Penetrant Test (DP)

Specific component examinations are as follows:

- Main Cylinder Structural Components
 - Visual = Leaks / Defects & Weld repairs
 - Physical = Parallelism / Perpendicularity
 - NDT = UT / MT / DP
- Main Cylinder Replaceable Components
 - Main Bushing
 - Gland Bushing
 - Packing

Ram
- Visual = Leaks, Scoring
- Physical = Diameter, Trueness
- NDT = Case specific

Ram Replaceable Components
- Cylinder wear components
- Crosshead wear component

Crosshead
- Visual = Loose / Jump
- Physical = Trueness
- NDT = UT / MT / DP

Crosshead Replaceable Components
- Vertical Guide Wear Plates
- Horizontal Guide Wear Plates
- Mandrel Crosshead Wear Plates
- Mandrel Bushing

Container Housing
- Visual = Loose / Jump
- Physical = Trueness
- NDT = UT / MT / DP

Container Housing Replaceable Components
- Vertical Guide Wear Plates
- Horizontal Guide Wear Plates
- Container Liner

Platen
- Visual = Defects / Weld Repairs
- Physical = Parallelism
- NDT = UT / MT / DP

Platen Wear Surfaces
- Frame interface
- Pressure plate counter bore

Frame
- Visual = misalignment, fdtn. issues
- Physical = Flatness / Parallelism
- NDT = Case specific

Frame Replaceable Components
- Crosshead ways
- Container housing ways
Modernizing Older Presses - Chapter C

- Tie Rods
 - Visual = Loose nuts, crash effects
 - Physical = Loaded vs. Unloaded (amount of stretch)
 - NDT = UT+

Major Press Components

![Diagram of Major Press Components]

Minor Press Components

![Diagram of Minor Press Components]

Summary

- Rebuilds are an excellent way to make your press like new or to give it an upgrade.
- Many tools exist today for both inspection and engineering evaluation, such as Laser Trackers and Finite Element Analysis.
- Don’t just replace your worn out or failing components with in-kind replacements – take the opportunity to upgrade them with superior materials and FEA-aided design.
Vendor Request form for Possible Press Upgrades
(Indicate interest with ☑ and fill in details)

Date

Client Name

Address

City-State-Postal Code

Country

Telephone

Fax

E-mail

Information about the Existing Press:

Press manufacturer and year?

Press tons (Metric or US Tons)?

Number of columns (tie rods)?

Conventional or short stroke?

Billet diameter(s)?

Maximum billet length?

Maximum profile weight (per foot or meter)?

Approximate dead cycle?

Fixed dummy block?

Are any major components cracked or failing?

Die changer: single, double, or other?

Container holder: 1-piece or 2-piece?

Relay or PLC control? If PLC, what type?

Hydraulic system manufacturer?

Main hydraulic pumps – number and type?

Billet heater: gas or induction?

Billet heater manufacturer and year installed?

Log shear installed? Supplier and year installed?

Lead-out table length?

Profile cooling: water, air, or both?

Puller installed? If so, supplier? Single or double?

Hot profile saw or shear installed? If so, is it fixed or moveable?

Run-out table length and width?

Is space available for extending the handling system?

Run-out table type (fixed, moveable slats, or rollers)?

Lift-over type (belts or lift arms)?

Cooling table type (walking beams, belts, or other)?

Stretcher feed type (manual or powered belts)?

Stretcher capacity (Metric or US tons)?

Stretcher type – 2-man, 1-man, no man)?

Batching table type – beams or belts?

Batching table width?

Transfer to saw table – belts, walking beams, manual?

Saw table width?

Saw table type – powered rollers or drive belts?

Saw type, manufacturer, and year?

Length gauge – automatic or manual positioning?

Maximum finished profile length?

Off-load and stacking – are transfer belts or stacker installed?

Die heaters – number, type, and manufacturer(s)
<table>
<thead>
<tr>
<th>Press:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Replace major parts (columns, main cylinder, platen, etc.)</td>
</tr>
<tr>
<td>☐ Convert from relay control to PLC</td>
</tr>
<tr>
<td>☐ Modernize hydraulic system/reduce dead cycle</td>
</tr>
<tr>
<td>☐ Install fixed dummy block</td>
</tr>
<tr>
<td>☐ Install unistation die changer (shuttle type)</td>
</tr>
<tr>
<td>☐ Replace or improve butt shear</td>
</tr>
<tr>
<td>☐ Improved container holder and alignment</td>
</tr>
<tr>
<td>☐ Improved billet loader</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Press Feed Line:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Energy-efficient gas billet heater</td>
</tr>
<tr>
<td>☐ Induction or hybrid (gas + induction) billet heater</td>
</tr>
<tr>
<td>☐ Taper heating or cooling of billets</td>
</tr>
<tr>
<td>☐ Log shear (or saw)</td>
</tr>
<tr>
<td>☐ Log cleaning brush</td>
</tr>
<tr>
<td>☐ Improved billet transfer and loader</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Handling System:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Improve air quench system</td>
</tr>
<tr>
<td>☐ Improve or add water quench system</td>
</tr>
<tr>
<td>☐ Add/replace puller system</td>
</tr>
<tr>
<td>☐ Add/replace profile saw or shear</td>
</tr>
<tr>
<td>☐ Convert run-out to rollers</td>
</tr>
<tr>
<td>☐ Convert profile transfer to belts</td>
</tr>
<tr>
<td>☐ Convert cooling bed to belts</td>
</tr>
<tr>
<td>☐ Replace stretcher: Capacity? 1-man or no man?</td>
</tr>
<tr>
<td>☐ Convert batching table (after stretcher) to belts</td>
</tr>
<tr>
<td>☐ Replace saw feed conveyor table</td>
</tr>
<tr>
<td>☐ Replace cold saw</td>
</tr>
<tr>
<td>☐ Replace profile length gauge</td>
</tr>
<tr>
<td>☐ Add manual off-loading belts for profiles</td>
</tr>
<tr>
<td>☐ Add automatic profile stacker</td>
</tr>
<tr>
<td>☐ Convert to double length</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Die Heaters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ New die heater(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ New age oven(s)</td>
</tr>
<tr>
<td>☐ Upgrade age oven(s)</td>
</tr>
<tr>
<td>☐ Profile conveying system</td>
</tr>
</tbody>
</table>
The following paper was presented at ET 2004, Orlando FL:

The Extrusion Press Line for 2024: A Forecast
By Al Kennedy, Kennedy Eurotech, Inc.

Abstract
When building a new plant or making changes to an existing extrusion plant, it is important to consider what new technology may become available in the future, in order to insure against early obsolescence and to insure that the manufacturing plant will remain competitive as far as possible into the future.

But how is it possible to forecast the extrusion technology of the future? Each equipment supplier insists that what he is selling is now, and will remain, the “wave of the future.”

In this paper we review past trends, going back 20 to 30 years, and then use this information to project them forward in light of general trends in industrial technology. Of course the past is not always a reliable guide to the future, but even a low degree of accuracy is better than considering what may develop. It also helps that aluminum extrusion is now a mature industry, and changes tend to be evolutionary (that is, small and incremental) instead of revolutionary.

One other purpose of this paper is to suggest a possible agenda – a “To Do List” – of opportunities for those working on technical development of extrusion plant equipment.

Historical Perspective
A good beginning is to review some of the trends over the past twenty years or so. Here is a sampling of a few important extrusion technologies from pre-1980, compared to today’s state-of-the-art:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose dummy blocks</td>
<td>Fixed dummy blocks</td>
</tr>
<tr>
<td>Slatted run-out conveyor with graphite</td>
<td>Double puller and hot saw with high-temp rollers</td>
</tr>
<tr>
<td>Graphite walking beams</td>
<td>Kevlar belts</td>
</tr>
<tr>
<td>Lift-over arms</td>
<td>Transfer belts</td>
</tr>
<tr>
<td>2-man stretcher</td>
<td>1-man or no-man stretcher</td>
</tr>
<tr>
<td>Relay logic on press</td>
<td>PLC control w/ supervisory computer</td>
</tr>
<tr>
<td>Billet heater: chain-type, 18% efficient</td>
<td>Billet heater: heat recovery, 55% efficiency</td>
</tr>
<tr>
<td>Pre-cut billets</td>
<td>Hot log shear</td>
</tr>
<tr>
<td>Single die changer</td>
<td>Unistation or rotostation changer</td>
</tr>
<tr>
<td>Long stroke press</td>
<td>Compact or moveable-stem press</td>
</tr>
<tr>
<td>30 second dead cycle</td>
<td>14 second dead cycle</td>
</tr>
<tr>
<td>Saw table 18” wide</td>
<td>Saw table 36” wide</td>
</tr>
<tr>
<td>Lead-out table 20 ft. long</td>
<td>Lead-out table 50 to 150 ft. long</td>
</tr>
</tbody>
</table>
Upon analyzing these developments, some common factors underlying their development can be extracted:

- Competitive pressure to improve production rates and recovery
- De-bottlenecking – eliminating barriers to increased production
- Analysis of the causes of low quality
- Availability of new materials (Kevlar)
- Availability of new technology (computers and controls)
- Creative solutions for old problems
- Re-adaptation of old technology (short-stroke presses)
- Automation and mechanization
- Demand for improved ergonomics and safety

Certainly all of these factors will still contribute to changes in the future.

Trends in Industrial Technology

We can also look at some general trends in industrial technology to see our future; for example:

- Computers and electronics will continue to get smaller, faster, cheaper, more reliable, and more user friendly.
- New materials with improved properties (such as higher temperature resistance) are coming to market.
- New tools such as lasers, wireless devices, and portable electronics are changing the way work is done.
- Automation and mechanization continue to eliminate unskilled jobs, while increasing individual productivity and improving ergonomics. The shortage of skilled technicians, however, is increasing.
- Metal cutting and forming methods are changing rapidly with use of NC control, lasers, water jets, plasma, etc.
- Finite Element Analysis is bringing sweeping changes in new areas such as fluid flow.
- Knowledge of new technologies spreads throughout the world at lightning speeds.

Trends: Press Feed Equipment

Two decades ago the common billet heater in use in North America was a chain-bottom gas furnace with no preheat or heat recovery features; thermal efficiency was less than 20% and reliability very poor. Log shears or saws were rare and billet length was seldom optimized (in one study of precut billets, the correct billet length was used less that 50% of the time).

Today’s Consensus Technology11: a high-efficiency gas log heater with hot log shear; billet transfer by robot or overhead loader; taper heat or quench of billets (at least in most inquiries).

11 The phrase “Today’s Consensus Technology” as used throughout this paper refers to the most commonly requested and installed systems in the European and North American soft
Developments now in Progress:

Gas Log or Billet heaters are currently approaching 55 to 60% efficiency, which is likely near the maximum achievable. Future improvements in gas heaters are needed in the areas of reliability (better rollers, refractory linings, and temperature probes), and more precise temperature control (infrared or other new methods to replace thermocouple probes). Prediction: The log/billet heater of 2024 will have improved reliability and efficiency in the 60% range.

Induction billet heaters have so far taken less than 10% of the market in North America, because of significantly higher costs for both initial investment and energy. Soft alloy extruders seem especially sensitive to these costs, even though the benefits in process control and quality that result from finer temperature control and precise taper heating of the billets may well offset the higher initial costs. Improvements in solid-state controls and coil design are making induction more competitive as well as more reliable. Prediction: Significant market penetration (beyond specialty applications) will only occur if extruders gain a new appreciation for the benefits of better process control.

Hybrid gas-plus-induction billet heaters, which preheat with gas and finish with induction, offer the superior process control of induction with reduced energy and investment costs, and can work with a log shear. Prediction: This technology should become much more common in the next 20 years.

Taper heating or quenching of billets has been promoted as allowing maximum extrusion speeds, and many systems have been installed. Published reports by users have been limited with mixed results – some are enthusiastic about the benefits, others are disappointed and have discontinued use of the systems. What can be concluded from current experience? Mainly that successful use requires good control and optimization of all extrusion parameters. Prediction: Most new press lines will incorporate one or the other of these systems in 2024.

Log shears are now common but some designs have had poor reliability, poor quality of cut, and high scrap rates. Better quality shears today have 98+% reliability, good cut ends, and a sophisticated short-piece routine to minimize scrap by using only sawn ends in the 2-piece joint. Prediction: Hot log shears will remain the “gold standard” for the next 20 years or more.

Log saws have usually been used before the heater, although a version for use after the heater is now reported to be under development. Saws inherently have waste due to chips as well as high blade and lubricant costs; using a saw before a gas heater makes it difficult to match billet length to demand and so reduces recovery. Using a saw after the heater solves the flexibility problem but not the blade and saw chip problems. Also, the time the log is out of the heater for cutting is critical to log heater capacity. Prediction: We will watch developments in this area but do not believe log sawing will take the place of good, reliable hot shears.

Billet transfer conveyors and loaders are usually extruders’ most frequently mentioned equipment problems. Loaders mounted inside the press frame are unreliable and dangerous to maintain. Transfers that roll or dump billets into position are inherently unreliable, especially with 2-piece billets. Today’s overhead or robot-type loaders, which pick up the billet and place it directly into

the container infeed -- without rolling or dumping -- are today’s standard. *Prediction:* Old type loaders mounted inside the press frame will soon be history, replaced by robot or overhead types.

Improved billet temperature measurement and control are an essential development for coming years. After all, thermocouple probes are likely as much as ± 50 Fahrenheit degrees (28 Celsius degrees) in error due to calibration and other problems; and daily maintenance of probes is a burden on plant personnel. Work is now in progress on infrared sensors\(^\text{15}\) and seems promising, and other approaches may emerge. *Prediction:* With the high stakes involved, improved billet temperature controls are expected to become available within the next few years.

Trends: The Extrusion Press

The many different press designs we have seen in operation in just the past few decades demonstrate the creativity of extrusion equipment engineers:

- Presses with 3 columns (or tie rods), 4 columns, laminated plate columns, or even no columns (top and bottom plates providing the tensile resistance).
- Presses with moving stems (moving up, down, to the side, or retracting into the crosshead).
- Presses with three rotating containers (while one was extruding, one was being cleaned, and the other was being loaded with a billet).
- Presses with all manner of designs for container guiding, butt shearing, die changing, etc.
- Cast iron and cast steel components once prevailed, and fatigue life was a major problem as some presses were built with inadequate structural design.

What does the extrusion “paleontologist” discern from examining the bones of these “dinosaurs”?

Today’s Consensus Technology: a moveable-stem or front-loading compact design press, with four sleeved pre-stressed columns, forged main components, four container sealing cylinders, robot or overhead billet loader, and unistation die changer; billet length 40 to 60 inches (1000 to 1500 mm); specific pressure 85,000 to 115,000 lb/in\(^2\) (60 to 80 kg/M\(^2\)).

Development now in Progress:

Moveable stem and front load presses are capturing most of today’s market, at least among more sophisticated extruders, due to advantages in dead time, improved rigidity, and reduced space required; conventional presses are mainly of interest in low budget or third world plants. *Prediction:* Compact presses (front loading and shifting stem) will completely take over the market, although it is not yet clear which one will win the dominant share.

Press columns today are, by consensus, four forged columns placed in pre-stressing sleeves. Laminated plate columns seem an anachronism, and non-pre-stressed columns are reserved for low budget and third world presses. *Prediction:* The four column pre-stressed design will still be the standard in 2024.

Forged components are the “gold standard” today for front platen, main cylinder, columns, and container holder, primarily due to the difficulties in assuring the quality of cast components; inclusions and voids in castings make it all but impossible to assure the quality of castings.

through ultrasound and MPI inspections. Use of Finite Element analysis has already vastly improved component life in new presses. Prediction: Forged components will be used universally in the future, and FEM combined with improved testing will substantially improve component life.

Billet length has increased steadily so that today’s standard ranges from 1000 to 1500 mm (40 to 60 inches), thus allowing a wide range of profile weights and great potential for multi-holing of dies. Prediction: This new range of billet lengths is the new standard; presses with shorter billet lengths will be handicapped (exception: conventional presses that can increase billet length by conversion to short-stroke).

Press hydraulic systems today use mainly constant speed, variable volume pumps; but the idea of fixed volume, variable speed pumps (speed varied by frequency variation device) is attracting attention. Experts are divided on this subject, and only a few practical cost/benefit analyses have been published16,17. Prediction: It is simply too early to predict which of these technologies will prevail.

Other hydraulic features that are quite common now include increased use of manifolds; pumps mounted at or below floor level, usually in sound damping enclosures; and decreased hydraulic shock through damping, proportional valves, and better pipe joints and mountings. These contribute to reducing oil leakage, another of the main maintenance headaches in an extrusion plant. Improved hydraulic oil cooling and filtration are now absolutely essential features of a new press. Prediction: All of these improvements will be standard in the future, with incremental improvements in each area yet to come.

Press controls have already been revolutionized in our recent memory with development of PLC’s, networking, and reliable press line automation. In today’s more modern plants the press “operator” is more a supervisor than operator, with the press mostly operating on auto-pilot. With today’s level of computer control and data handling, only incremental (small) changes seem possible; however, the history of the computer revolution tells us that faster and cheaper processors, and leaps in storage capacity at lower costs, will find their way into our world and change it dramatically.

Another extrusion goal, controlling ram speed from profile temperature, has so not been successfully applied to any significant degree; despite great improvements in infrared temperature measuring devices, their usefulness remains mainly as an advisory to the press operator, not a continuous part of the control loop. Others continue to develop and refine “analog” systems that predict profile temperature based on press parameters18. In any case, much development work remains to be done. Prediction: It seems likely that the next 20 years will finally see the availability of a reliable system for automatically controlling extrusion speed by profile temperature.

Robot (or overhead) billet loaders that “pick and place” the billet without rolling or dumping, are the standard on new presses and can solve one of the major maintenance and operating headaches of older presses. Prediction: “Pick and place” loaders will be on all presses including popular retrofits to older presses.

Unistation die changers are likewise the standard for new presses and a popular retrofit; they reduce die change time and can significantly increase production over a year’s time. Prediction: No change; unistations will remain the standard in the future.

17 Rutkowski, R.J., Ibid.

Automatic tooling handling from the die heater to the press is now rare in Europe and almost unknown in North America. This kind of system is ergonomically attractive and can save operator time and distraction, as well as saving press time during tooling changes. Prediction: In 2024 we will see a significant number of robotic tooling handlers from the die heater to the unistation die changer.

Container and tooling temperature control are receiving greater attention for their importance in achieving process reliability and optimization. New container heating systems offer better zoning and control schemes, and many now offer container cooling as well. Some also offer in-the-press tooling heaters in case of prolonged delays between billets. Prediction: Much closer control of container and tooling temperatures will be standard operating practice in future decades.

Other auxiliary mechanical systems such as butt shears, burp elimination schemes, container guiding methods, and others are already subjects of intense competition between press suppliers as they each try to differentiate their particular press from their competitors. The goal is 100% reliability of these functions to support operator-free extrusion, minimum dead cycle time, and maximum recovery. Today’s best butt shears use various designs to insure close contact with the die face as well as reliable release of the butt (and verification that it has separated); the die stack is often pressed back against the die ring and clamped vertically to insure a fixed shear plane; and various lubricant systems and blade designs assure good butt release. Various air release schemes are claimed to eliminate the burp cycle, at least on a large percentage of dies. Modern container alignment designs are simple to adjust and offer near-permanent accuracy; lasers or encoders are used to continuously monitor alignment accuracy and signal any deviation. Specialty high-tech lubricants and applicators also insure reliable non-stick operation and avoid lost time by operating automatically. Prediction: Regardless of which particular designs win out in these areas, presses of the future will carry out these auxiliary functions with far greater reliability and much less operator involvement than current press lines.

Trends: Handling Equipment After the Press

Two decades ago the revolution in after-press handling systems was just beginning in Europe and not yet underway in North America. The typical handling system had graphite-bar slat conveyors for the run-out; no pullers; graphite covered walking beams for the cooling table; water quench (if any) by standing-wave; air quench by fixed volume fans located over the table; 2-man stretching; manual batching and saw feeding; and ear-splitting noise from over-the-table profile saws. Length of the lead-out up to the cooling table was often as little as 26 feet (5 meters). Continuous or welding extrusion was mainly limited to hollows, and cutting was by manual saws or crude hot shears.

Today’s Consensus Technology: today’s handling systems commonly have long lead-outs (commonly “double length” in new plants); roller-type run-outs that drop down to allow profile transfer; double pullers to match short press dead cycle times; automatic sawing of hot profiles on the welding point; Kevlar belts for transfer and cooling; automatic no-man or one-man stretching and batching; quiet under-table sawing; and one-man sawing and stacking. The two- or three-man press crew oversees much higher production with less effort, compared to the five- to eight-man crews of two decades ago.

Developments now in Progress:

Double length run-outs were pioneered at Metra in Italy some 20 years ago and have become the standard for new plants (as well as older plants where space permits). Double length systems operate without any limit on extrusion speed and maximize recovery while eliminating any need for profile hand-off or flying cut sawing. The only penalty is a slightly longer building required. **Prediction:** Double length run-out will become the permanent standard for new plants.

Quenching by air is growing more sophisticated; air is supplied from central systems applied to the work from both above and below, and air volume is adjustable remotely by both dampers and frequency variation. Newer systems apply high-intensity cooling from nozzles located very close to profiles as they exit the press. **Prediction:** Precise adjustment of cooling air with computer control (adjustment and memorizing of settings) will be the standard in coming decades.

Quenching by water has also become more complex. Spray systems predominate for profiles, with water bath and standing wave used for heavy shapes such as rods and bars. Spray quenches offer wider adjustability and special infinitely variable air-water nozzles\(^{21}\). Sprays may be controlled by position around the periphery of the profile and by longitudinal zone, and the successful spray pattern will be memorized by computer for later recall. **Prediction:** Sophisticated water quenches will become an essential tool for producing straight the profiles needed for stretcher automation.

Pullers and profile cutting systems have proliferated in numbers and in the different designs available in the last 15 years. Any new or refurbished press requires a double puller to match a short press dead cycle (below 20 seconds), but there are many different conceptual designs to choose from, such as hand-off vs. no-hand-off, flying vs. stationary cut, and 2-machine vs. 3-machine systems; and there are different drive designs\(^{22}\) and different guide rail systems. With new concepts and designs arriving in the marker almost every year, it is impossible to foresee clearly just what puller design will come next. Sawing of hot profiles, however, has become the standard over hot shears and will remain so until high-tech cutting (lasers or water jets) can be perfected. **Prediction:** For double-length systems, the stationary cut, no-hand-off, 3-machine puller/saw system is the choice. For shorter systems, the only clear choice is the double puller; the buyer will have to choose between hand-off and non-hand-off versions. In either case, sawing is the best way to cut off the hot profiles for the near future, at least until laser cutting technology advances considerably.

Pinze-type systems that maintain profiles under tension up to the saw have only been successful in specialized applications, such as plants where long production runs are common. High capital costs have also limited their acceptance by extruders. An intermediate, lower-cost version\(^{23}\) now being developed may find greater usage. **Prediction:** Unless a lower-cost, mechanically simpler version is proven out, this system will be limited to specialty applications.

Length of the cooling tables has doubled and even tripled in recent decades, so that tables of 150 to 175 feet (45 to 55 meters) in length are now common. At the same time, however, improvements in die design have made multi-hole dies more successful, so that long tables are less important, even with longer billets. **Prediction:** The length of cooling tables will stabilize at the current 150 to 175 feet (45 to 55 meters) in length, or even decrease slightly.

High-temp surface materials such as Kevlar for belts and rollers have greatly benefited profile surface quality, and suppliers have recently been able to increase temperature ratings and

therefore service life of these materials. Improved quenching systems and double-length run-outs also help to prolong the life of belts and rollers. **Prediction:** As there are no new high-temperature materials currently in sight, Kevlar belts and rollers will remain the standard for the foreseeable future.

Stretchers have been the subject of many incremental improvements. No-man stretching is quite practical from a hardware standpoint, as long as the profiles are reasonably straight. Limited-crush jaws now reduce the amount of scrap generated by clamping. New controls measure the distance between head- and tail-stock and allow control of stretching as a percentage of actual strand length. Otherwise, no dramatic changes have occurred in some years. **Prediction:** Tomorrow’s stretchers will not differ significantly from those of today’s modern plants.

Batching and conveying between the stretcher and cold saw present a bottleneck in many older plants, whereas newer plants have improved capacity by widening these conveyors. A sawing batch today should be one meter (about 40 inches) or more in width, to maximize saw production rate. The batching table after the stretcher should be sized wide enough to hold two saw batches. **Prediction:** Wider batching and saw conveyors in new plants will eliminate bottlenecks in automatic batching as well as sawing.

Sawing of finished profiles has improved substantially in the past two decades with under-table saws that allow more effective clamping for noise reduction. “Near dry” or “micro applied” sawing lubricants have reduced blade costs, improved cut quality, and practically eliminated coolant residue on profiles and in the saw area. Chip collection is better, and maintenance is less and simpler. Aside from incremental improvements to today’s excellent saws, what does the future hold? **Prediction:** Perhaps the new industrial cutting technologies that have revolutionized other industries – plasma torches, lasers, water jets – will finally find their way into extrusion press lines.

Length gauges at the saw are quite sophisticated and totally automated today. The greatest issue to extruders today is the need for better sawing accuracy off the press – usually not due to the gauge, which is quite accurate, but due to problems of quickly assuring that all profiles are touching the gauge equally. **Prediction:** Look for electronics and laser technology to resolve the issues of cutting accuracy.

Automatic stacking of profiles is normal in Europe but still rare in North America, mainly due to differences in labor costs and ergonomic standards. Stacker designs have advanced technically and in reliability, and prices have also decreased. **Prediction:** Automatic stacking, as well as de-stacking at use points throughout the plant, will be used nearly 100% due to labor cost, quality, and ergonomic issues.

Automation of extrusion handling systems has been a difficult journey for some extruders and suppliers, but today’s best plants offer high reliability and productivity, with as few as two operators, and in rare cases just one. The last remaining obstacle to complete automation is the quality (mainly straightness) of the profiles going to the stretcher, and the solution will come from better die design and more sophisticated quench systems. **Prediction:** Two-person press lines will become the norm and one-person lines will not be unusual.

Trends: Other Areas

Die design and manufacture have been dramatically improved in the past 20 years by CAD design and computer controlled machining, allowing exact shape reproduction hole-to-hole and die-to-die. Design is slowly moving from the realm of art towards becoming a science; application of FEM analysis to metal flow will likely automate the design process even more, at the same time improving control of profile straightness and tolerances. Resulting advances in multi-strand die capability can greatly improve press productivity. **Prediction:** The “computer-designed die” that produces good product on the first try will become a reality, and the “first adopters” of this technology will enjoy a huge competitive advantage.
Die heating equipment is currently an area where significant change is occurring, as users recognize the importance of controlling tooling temperature. Single chamber heaters are becoming popular, along with computer tracking of each tool being heated. Other technologies include inert atmosphere heaters, induction, and infrared. Prediction: The top-opening die box will fade into history, replaced most likely with single chamber heaters and precise tracking of each die through its heating cycle. Issues of cost, complexity, and flexibility may limit induction die heating to special cases.

Aging systems today encompass long aging (full strands), continuous and semi-continuous aging, and automatic handling through the aging system. There are also end flow, side flow, multi-zone, reversing, and traveling versions as well. The primitive, long, end flow, single zone ovens of twenty years ago have yielded to the need for more precise process control and temperature uniformity throughout the load. Prediction: Tomorrow’s age ovens will be shorter with much better temperature uniformity throughout the load, typically through reversing air flow or multi-zoning. Continuous and long aging will have to prove their advantages to become widely used.

Trends: World Markets and Economics

Global competition from countries with low labor and energy costs is a major concern today for most European and North American extruders. Chinese extruders, for example, have low wages (10% compared to USA), little or no land cost, and low equipment costs (10 to 35% compared to USA, although for much less sophisticated plants). Until global economics begin to equalize these differences at some future date, Western extruders will have to compete with the tools they have available: faster delivery time, lower freight and duty costs, and better customer service. In particular, they must learn to produce smaller orders with drastically reduced lead times, and still do it profitably.

Extruders must consider how best to deal with both domestic and foreign competition: with the simplest, lowest cost (even Third World) equipment; or with more advanced press systems on the European model. The answer seems clear: the Western extruder can only compete with low wage producers by achieving maximum productivity with the best equipment and technology available. Prediction: The present two-tier system -- high-tech plants in developed countries, competing with simple plants in less-developed countries -- will eventually fade away as global economics begin to even out wages and costs throughout the world.

Conclusion

This review paper is intended mainly to provoke discussion and to suggest the questions that extruders should ask as they plan their plants for the future. Please consider our suggested answers, but the reader must do his own research for the ultimate answers.

“Double-Length” Run-Out Systems

The ideal layout for an extrusion press handling system --- when space allows --- is the so-called “Double Length” system. Sometimes circumstances prohibit using this design (for example when retrofitting handling equipment into a limited space in an old plant); but wherever possible it offers the most efficient possible extrusion operation.

The “Double Length” run-out system was developed in order to provide a practical means of sawing hot profiles on the weld point during the press dead cycle. The system offers other benefits as well, for example: cooling takes place while the profiles are under tension from the puller so that they remain straighter. Profiles are also much cooler before they contact the cooling belts, which increases belt life.

Positionable hot saw (or hot shear) systems cut the profiles at a distance of one finished length from the die, but the weld points are then left to be removed at the cold saw. The result is extra scrap (about 3 feet per strand), and extra operator attention may be required. The 3 feet of scrap represents 2% for a 150 foot strand, for example.

Flying-cut systems can saw on the weld mark but pose other design and maintenance problems. Hand-off type double pullers often mark the profiles at the die when handing off, which is unacceptable to many extruders due to quality problems. Long lead-outs are needed to allow time for the flying-cut operation without reducing extrusion speed; for higher extrusion speeds, the required lead-out distance approaches double length and still requires the expense and complexity of flying-cut hardware.

The “Double Length” system has one complete extrusion strand on the run-out system at all times, and the saw is automatically positioned to cut on the weld mark during the press dead cycle. Cooling is substantially improved, since the profiles are exposed to cooling air for two complete cycles before being released from the puller and transferred to the cooling table. Profiles are not subjected to the extreme twisting forces required to bring them into alignment on a short table. Overall, a 2% to 3% net reduction in press scrap can be expected.

At first glance the “Double Length” system appears to require twice as much floor space as a conventional system. However, referring to the diagrams makes it clear that the total increase is much smaller --- considering that in any case the minimum distance from press to cooling table must be equal to the longest finished profile produced. In terms of the overall plant area, the increase is even less, about 30 to 40%.

And, the extra space is not wasted, since it allows adequate room for die ovens, tooling storage, scrap removal, etc. There is space for an effective water quench and air fans as well. The press operator’s area is no longer congested, and there is good access for maintenance.

Wherever it is possible to install the “Double length” system, any increase in building cost will be offset by the 2-3% reduction in press scrap over the entire life of the press. Add in the improved cooling and longer belt life, and it becomes clear that the “Double Length” system is the ideal plant layout.
Figure C-30: Comparison of "Conventional" and "Double Length" Handling Systems

"DOUBLE LENGTH" SYSTEM:

"CONVENTIONAL LENGTH" SYSTEM: